遷移金属化合物における 強相関電子物性

東北大学

大串 研也

はじめに

- ・このpptは、2015年の夏の学校における講演内容です。
- この資料では、理論にも触れていますが、完全なものでは ありません。
- この講演資料で概観に触れた後に、専門書や論文に直接 あたって理解を深めて下さい。
- ・幸い、この分野には日本語で書かれた良質の教科書が沢 山あります。また、研究の最先端は日進月歩です。
- この資料の中で、図の出典は極力正確に記してあります。
 しかし、科学者のポートレートについては例外で、出典を明記していません。この点について、ご容赦下さい。

◆ 遷移金属化合物の強相関電子物性 ◆ 銅酸化物超伝導体La_{2-x}Sr_xCuO₄ ◆ Kitaevスピン液体候補物質Na₂IrO₃

◆ 遷移金属化合物の強相関電子物性

- ✓ 強相関電子系とは?
- ✓ 三大強相関量子相(超伝導・磁性・量子Hall効果)
- ✓ 強相関電子系としての物質
- ✓ 遷移金属化合物の強相関電子物性

超伝導 磁性 量子Hall効果

強相関電子系とは?

- 電荷
 e = −1.6021763208 × 10⁻⁹ C
- 質量
 - $m = 9.10938291 \times 10^{-31} \text{ kg}$
- 磁気モーメントµ_e = -9.284764620×10⁻²⁴ J/T

・電荷-1,スピン1/2のフェルミ粒子
 → その性質は、ほぼ完全に分かっている。

基底状態

励起状態

・ 励起状態は、一個の電子を動かすこと。
 → 自明。

強相関電子系

基底状態

励起状態

- 対称性・トポロジーで特徴付けられる量子秩序。
- "真空"からの素励起(準粒子・集団励起)は、
 一般に電子と異なる。

More is different !

三大強相関量子相

超伝導•磁性•量子Hall効果

強相関電子系の量子相(1): 超伝導

- ・フォノン・スピン揺らぎによるCooperペアの形成。
- ゲージ対称性の破れ。位相が剛性を獲得。
- 素励起は、Bogoliubov準粒子(電荷ゼロ)。

強相関電子系の量子相(1): 超伝導

エネルギー・環境・医療分野への応用 古河電気工業 HP; リニア見学センター HP: Wiki MRI; Kelly, Nature (2015); SPring-8 HP.

強相関電子系の量子相(2): 磁性

- スピンの整列。
- ・回転対称性の破れ。
- 集団励起は、スピン波。

強相関電子系の量子相(2): 磁性

Wiki 干支, 小平記念館HP, Wiki 柱上変圧器, Wikiハードディスクドライブ, Apple HP, 日本銀行HP

強相関電子系の量子相(2): 磁性

12代目市川團十郎

・歌舞伎の演目「毛抜」は、磁石が題材。1742年、初演。

・嫁入り直前の娘が、髪の毛が 逆立つという病気にかかる。主人 公が、毛抜きでひげを抜いている と、それが勝手に立って踊り始め る。しかし、銀の煙管は踊りませ ん。天井が怪しいと思った主人公 は槍で天井を一突き。すると大き な磁石を持った忍びの者が飛び 降りてきた。娘の前髪にさしてい た鉄のかんざしが、磁石に反応し たのが原因と判明。お家乗っ取り を図った家臣の悪事だった。

文化デジタルライブラリー HP 歌舞伎辞典

強相関電子系の量子相(3): 量子Hall液体

強相関電子系の量子相(3): 量子Hall液体

• 抵抗標準

von Klitzing constant $R_{K} = \frac{h}{e^{2}} = 25812.807557(18) \ \Omega$

 微細構造定数 (電磁相互作用)の検証 Fine-structure constant

$$\alpha = \frac{1}{4 \pi \varepsilon_0} \frac{e^2}{\hbar c} = 7.2973525698(24) \times 10^{-3}$$

横河メータ&インスツルメ ンツ株式会社 HP

強相関電子系としての物質

周期律における強相関電子系

Group — ↓ Period	▶ 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 A1	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 F1	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr			

周期律における強相関電子(粒子)系

電子系ではないけれど、原子系も強相関。

Lanthanides	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Actinides	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

周期律における強相関電子系

周期律における強相関電子系

	30	7	Sc	-	Гі	\	V		r	Mn		Fe		Со		li	Cu	
Group ↓ Period	40	2	Y	Z	Zr	Ν	b	M	0	Тс	; F	Ru	F	Rh	Ρ	d	Ag	3
1 2	50	7		ł	Ηf	Т	а	W	/	Re	e (Ds		r	Ρ	ť	Αι	J
3	11 Na	12 Mg	d電	『子系 13 1									14 Si	P	16 S	17 C1	18 Ar	
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 F1	115 Uup	116 Lv	117 Uus	118 Uuo
				57	50	50	60	61	(2)	62	64	65	6.6	67	60	60	70	71
	Lanthanides			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Actinides			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

周期律における強相関電子系

周期律における強相関電子系

	30	7	Sc	-	Тi	\	/	С	r	Mr	n F	-е	Со		N	li	Cu	
Group 1 Perioc	40	2	Y	Z	Zr	Ν	Nb Mo		0	Тс		Ru		Rh		d	Ag	J
1 2	50	2		ł	Ηf	Т	а	W	/	Re	e (Ds		r	Ρ	'n	Αι	<mark>ا</mark> ا
3	11 Na	12 Ma	d冨	d電子系 13 14 Si										14 Si	P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 F1	115 Uup	116 Lv	117 Uus	118 Uuo
	4	== (禾	7 7 4 2	- ملح	って	ا ک	-1)	わ	ナī	面白	JL'	の	は	<i>d</i> 霍	了	·系		71 Lu

93

Np

Pu

96

Cm

Bk

Cf

Es

95

Am

103

Lr

102

No

100

Fm

101

Md

Actinides

Th

Ac

Pa

U

遷移金属化合物の強相関電子物性

超伝導•磁性•量子Hall効果

遷移金属化合物の強相関電子物性(1):超伝導

・超伝導体は、超伝導波動関数で特徴付けられる。

$$\Delta_{\sigma\sigma'}(k) = \sum_{k'} V_{k,k'} \langle c_{k'\sigma} c_{-k'\sigma'} \rangle$$
$$= \begin{pmatrix} 0 & \Psi(k) \\ -\Psi(k) & 0 \end{pmatrix} + \begin{pmatrix} -\vec{d_1} + i\vec{d_2} & \vec{d_3} \\ \vec{d_3} & \vec{d_1} + i\vec{d_2} \end{pmatrix}$$

Spin-Singlet, Parity-Even Spin-Triplet, Parity-Odd

s波

d波

EF

EF

$\Psi(k) = 1$	s波	多くの超伝導体
$\Psi(k) = k_x^2 - k_y^2$	d波	Cu酸化物
$\vec{d}(k) = \hat{z}(k_x \pm ik_y)$	<i>p</i> 波	Sr ₂ RuO ₄

強相関電子系では、しばしば異方的になる。

遷移金属化合物の強相関電子物性(1): 超伝導

・遷移金属化合物は、高温超伝導の格好の舞台。

鉄系超伝導体

スピン揺らぎにより、s+-対称性の高温超伝導(T_c ~ 50 K)が実現。

- ・軌道・電荷揺らぎなど他の内部自由度も重要である。
- ・一次元梯子物質 $BaFe_2S_3$ で超伝導が発見されている。

トポロジカル超伝導体

・強磁性揺らぎが、p波超伝導(T_c=1.5 K)を誘起(³He超流動の電子版)
 ・トポロジカル超伝導体としても、研究されている。

遷移金属化合物の強相関電子物性

超伝導•磁性•量子Hall効果

遷移金属化合物の強相関電子物性(2):磁性

- ・強磁性・反強磁性の他にも、様々な磁気状態がある。
- •「幾何学的なフラストレーション」や「量子揺らぎ」は、 スピン秩序を阻害する。

Sachdev, arXiv:1203.4565

•遷移金属化合物は、スピン液体を具現する良い候補。

- ・量子揺らぎのために、静的秩序を示さない。スピン液体の一つ。
- Sが奇数と偶数で、性質が異なる。

巨大磁気抵抗効果

・強磁性金属と反強磁性絶縁体がエネルギー的に拮抗しており、
 2相を磁場で制御することができる。

遷移金属化合物の強相関電子物性

超伝導•磁性•量子Hall効果

- ・強磁性体における異常Hall効果が、量子化する。
- スピン軌道相互作用が、物質に埋め込まれた量子位相を 生み出し、トポロジカル量子現象を導く。

遷移金属化合物における強相関電子物性

3 <i>d</i>	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu
4 <i>d</i>	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag
5 <i>d</i>		Hf	Та	W	Re	Os	Ir	Pt	Au

高温超伝導 (Fe, Cu)
トポロジカル超伝導 (Ru)
量子スピン系 (Ni, Cu, Ir)
巨大磁気抵抗 (Mn)
量子異常Hall効果 (Cr)

高温超伝導,トポロジカル超伝導, 量子スピン系,巨大磁気抵抗, 量子異常Hall効果

複雜!!

簡単化する方法(模型化)を考えよう!

- ◆ 強相関電子系では、超伝導・磁性・量子 Hall効果の3大量子現象が発現する。
- ◆ 遷移金属化合物は、強相関電子系の典型 物質であり、面白い物質が多数存在する。
- ◆ 遷移金属化合物の特徴は、1. 大きな相互 作用、2. 内部自由度の存在、3. 量子位相 の内在、の3点である。

◆ 遷移金属化合物の強相関電子物性

◆ 銅酸化物超伝導体La_{2-x}Sr_xCuO₄

- ✓ 銅酸化物超伝導体の相図
- ✓ 有効模型(Hubbard模型)の構築
- ✓ 銅酸化物超伝導体の相図の理解

銅酸化物超伝導体の相図

・1986年に発見され、社会的にもフィーバーを巻き起こす。

 $La_{2-x}Sr_{x}CuO_{4}$

Takagi, PRB (1989).

• 様々なファミリーがあるが、相図は共通している。

かなり複雑 => どう理解したらいいの?

有効模型の構築 ~Hubbard模型~

La (Z= 57) \longrightarrow La³⁺ (1s)²(2s)²(2p)⁶(3s)²(3p)⁶(3d)¹⁰ (4s)²(4p)⁶(4d)¹⁰(5s)²(5p)⁶(5d)¹(6s)² 閉殻

 $Cu (Z=29) \longrightarrow Cu^{2+}$ $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(3d)^{10}(4s)^{1}$ (3d)⁹ $O(Z=8) \rightarrow$ O²⁻ $(1s)^{2}(2s)^{2}(2p)^{4}$ $(2p)^{6}$ 閉殻 電子物性を議論する上では、Cuの (3の)9電子のみ考えればよい。

30軌道

$$R_{32}(r) = \frac{4}{81\sqrt{30}} (\frac{Z}{a_0})^{3/2} \rho^2 e^{-\frac{\rho}{3}}$$
$$\rho = \frac{Z}{a_0} r, \ a_0 \ \texttt{it Bohr} \ \texttt{#径}$$

$$\begin{split} \varphi_{\xi} &= \sqrt{\frac{15}{4\pi}} \frac{yz}{r^2} R_{32}(r), \\ \varphi_{\eta} &= \sqrt{\frac{15}{4\pi}} \frac{zx}{r^2} R_{32}(r), \\ \varphi_{\zeta} &= \sqrt{\frac{15}{4\pi}} \frac{xy}{r^2} R_{32}(r), \\ \varphi_{u} &= \sqrt{\frac{5}{16\pi}} \frac{3z^2 - r^2}{r^2} R_{32}(r), \\ \varphi_{v} &= \sqrt{\frac{15}{16\pi}} \frac{x^2 - y}{r^2} R_{32}(r), \end{split}$$

結晶場分裂

<u>Slater-Kosterの表</u> (*I, m, n*)は方向余弦

$$t(x, xy) = \sqrt{3}l^2m(pd\sigma) + m(1 - 2l^2)(pd\pi)$$

$$t(x, yz) = \sqrt{3}lmn(pd\sigma) - 2lmn(pd\pi)$$

$$t(x, zx) = \sqrt{3}l^2n(pd\sigma) + n(1 - 2l^2)(pd\pi)$$

$$t(x, x^2 - y^2) = \frac{\sqrt{3}}{2}l(l^2 - m^2)(pd\sigma) + l(1 - l^2 + m^2)(pd\pi)$$

$$t(y, x^2 - y^2) = \frac{\sqrt{3}}{2}m(l^2 - m^2)(pd\sigma) - m(1 + l^2 - m^2)(pd\pi)$$

$$t(z, x^2 - y^2) = \frac{\sqrt{3}}{2}n(l^2 - m^2)(pd\sigma) - n(l^2 - m^2)(pd\pi)$$

$$t(x, 3z^2 - r^2) = l(n^2 - \frac{1}{2}(l^2 + m^2))(pd\sigma) - \sqrt{3}ln^2(pd\pi)$$

$$t(y, 3z^2 - r^2) = m(n^2 - \frac{1}{2}(l^2 + m^2))(pd\sigma) - \sqrt{3}m^2(pd\pi)$$

$$t(z, 3z^2 - r^2) = n(n^2 - \frac{1}{2}(l^2 + m^2))(pd\sigma) + \sqrt{3}n(l^2 + m^2)(pd\pi)$$

$$t = \frac{\sqrt{3}}{2}(pd\sigma)$$

• d^{\dagger} を c^{\dagger} と置き換える。 $H_{t,1-2} = -t(c_{1\sigma}^{\dagger}c_{2\sigma} + c_{2\sigma}^{\dagger}c_{1\sigma})$

•格子上で足し合わせる。

Coulomb相互作用を加える。

$$H = -t \sum_{i,j} \sum_{\sigma=\uparrow,\downarrow} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$
($n_{i,\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$)

Hubbard模型

$$La_{2-x}Sr_{x}CuO_{4}$$

La³⁺のSr²⁺への置換 電気的中性条件

Cu^{(2+x)+}: ホール注入

La (Z= 57) \longrightarrow La³⁺ (1s)²(2s)²(2p)⁶(3s)²(3p)⁶(3d)¹⁰ (4s)²(4p)⁶(4d)¹⁰(5s)²(5p)⁶(5d)¹(6s)² 閉殻

Sr (Z= 38) → Sr²⁺ (1s)²(2s)²(2p)⁶(3s)²(3p)⁶(3d)¹⁰ (4s)²(4p)⁶(5s)² 冒殻

✓ Hubbard 模型が内包する物理

$$H = -t \sum_{i,j} \sum_{\sigma=\uparrow,\downarrow} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

□ x = 0: Half fillingの場合

- *t* >> *U* → 金属
- t << U ---> モット絶縁体
- モット転移, U = 6.5~7.0 t

□ La₂CuO₄におけるパラメータ

□金属化の方法

・ バンド幅制御とフィリング制御

- *U/t* >>1かつHalf-filled (x =0)の場合 $H = H_0 + H'$ $H_0 = U \sum_{i} n_{i\uparrow} n_{i\downarrow} \quad H' = -t \sum_{i,j} \sum_{\sigma=\uparrow,\downarrow} c_{i\sigma}^{\dagger} c_{j\sigma}$
- 2次摂動により、有効Hamiltonianを求める。

$$H = J \sum_{i,j} \vec{S}_i \cdot \vec{S}_j \quad \left(J = 4t^2/U \right)$$

Heisenberg模型

・Heisenber模型の特徴

反強磁性的、等方的

銅酸化物超伝導体の相図の理解

・厳密に解けない。数値計算により、長距離秩序(*m* =0.62 μ_B)を示す ことが明らかにされている。電荷ギャップ有限、スピンギャップゼロ。 Manousakis, RMP (1991).

x ≠ 0: Hubbard模型

- •種々の近似を用いた数値計算により、モット転移を示すこと・d波超 伝導が出現することが明らかにされている。
- ・スピン揺らぎ(+電荷揺らぎ)が、超伝導を導く。

- ✓ 未解明の点
 - ・擬ギャップ状態の謎 隠れた秩序? d波超伝導のプレカーサー?
 - より高温にするには?
 多層系にする。頂点酸素の影響をなくす。

Shimizu, JPSJ (2011).

◆ 銅酸化物超伝導体の有効模型は、
 x = 0ではHeisenberg模型
 x ≠ 0では、Hubbard模型

◆ 反強磁性秩序は完全に分っている。
 ◆ モット転移・d波超伝導は分りつつある。
 ◆ 擬ギャップ相は、未だ分らない。

◆ Kitaevスピン液体候補物質Na₂IrO₃

- ✓ Na₂IrO₃の有効模型の構築
- ✓ Kitaev模型の厳密解
- ✓ Na₂IrO₃の物性
- ✓ 関連物質CalrO₃におけるKitaev型相互作用
- ✓ その後の発展

Kitaevスピン液体候補物質 Na₂lrO₃の有効模型構築

Kitaevスピン液体候補物質Na₂IrO₃

Na (Z= 11) → Na⁺ (1s)²(2s)²(2p)⁶(3s)¹ 閉殻 Ir (Z= 77) → Ir⁴⁺ (1s)²(2s)²(2p)⁶(3s)²(3p)⁶(3d)¹⁰(4s)² (4p)⁶(4d)¹⁰(4f)¹⁴ (5s)²(5p)⁶(5d)⁷(6s)² (5d)⁵

 ・電子物性を議論する上では、Irの (5d)⁵電子のみ考えればよい。

結晶場分裂

遷移金属におけるスピン軌道相互作用

スピン軌道相互作用 (eV)

3 <i>d</i>	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.10	0.12
4 <i>d</i>	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag
	0.04	0.06	0.08	0.10	0.12	0.15	0.18	0.21	0.25
5 <i>d</i>		Hf 0.22	Ta 0.28	W 0.34	Re 0.40	Os 0.47	lr 0.55	Pt 0.63	Au 0.71

•5d電子系では、相対論効果が顕著であり、スピン軌道相互作用 が大きい。

スピン軌道相互作用

スピン軌道相互作用
$$H_{so} = \frac{\hbar}{2m^2c^2} \operatorname{grad} v_{crys}(\vec{r}) \times \vec{p} \cdot \vec{s} \equiv \vec{t}(\vec{r}) \cdot \vec{s}$$

 t_2 軌道 $(\varphi_{\xi\uparrow}, \varphi_{\eta\uparrow}, \varphi_{\zeta\uparrow}, \varphi_{\xi\downarrow}, \varphi_{\eta\downarrow}, \varphi_{\zeta\downarrow})$ を基底

$$H_{\rm so} = \frac{\zeta}{2} \begin{pmatrix} 0 & i & 0 & 0 & 0 & -1 \\ -i & 0 & 0 & 0 & 0 & i \\ 0 & 0 & 0 & 1 & -i & 0 \\ 0 & 0 & 1 & 0 & -i & 0 \\ 0 & 0 & i & i & 0 & 0 \\ -1 & -i & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\zeta = -i\langle \xi \mid t_\gamma \mid \eta \rangle$$

•
$$J_{\text{eff}} = 1/2$$
状態, $E(U') = -\zeta/2$
 $\varphi_{1\pm} = \frac{1}{\sqrt{3}}(\varphi_{\zeta} \mid \pm \rangle \pm (\varphi_{\xi} \pm i\varphi_{\eta}) \mid \mp \rangle)$
 $= \frac{1}{\sqrt{3}}(c_{\zeta\uparrow\downarrow}^{\dagger} \pm (c_{\xi\downarrow\uparrow}^{\dagger} \pm ic_{\eta\downarrow\uparrow}^{\dagger})) \mid 0\rangle,$

• J_{eff} =3/2状態,
$$E(E'') = \zeta$$

$$\varphi_{2\pm} = \frac{1}{\sqrt{2}} (\varphi_{\xi} \pm i\varphi_{\eta}) | \pm \rangle$$
$$= \frac{1}{\sqrt{2}} (c^{\dagger}_{\xi\uparrow\downarrow} \pm ic^{\dagger}_{\eta\uparrow\downarrow}) | 0 \rangle,$$
$$\varphi_{3\pm} = \frac{1}{\sqrt{6}} (2\varphi_{\zeta} | \pm \rangle \mp (\varphi_{\xi} \pm i\varphi_{\eta}) | \mp \rangle)$$
$$= \frac{1}{\sqrt{6}} (2c^{\dagger}_{\zeta\uparrow\downarrow} \mp (c^{\dagger}_{\xi\downarrow\uparrow} \pm ic^{\dagger}_{\eta\downarrow\uparrow})) | 0 \rangle$$

結晶場分裂・スピン軌道相互作用

- ・ t_2 軌道の飛び移り積分を考える。
- ・
 ・
 上
 側酸素O(1)を経由するパスは、27通り。

<u>Slater-Kosterの表</u> (*I, m, n*)は方向余弦

飛び移り積分

$$t = (pd\pi)$$

$$\begin{split} H_{t,1-2} &= (pd\pi)(d_{1\xi\sigma}^{\dagger}p_{1z\sigma} + p_{1z\sigma}^{\dagger}d_{2\eta\sigma} + d_{1\eta\sigma}^{\dagger}p_{2z\sigma} + p_{2z\sigma}^{\dagger}d_{2\xi\sigma}) + \Delta(p_{1\sigma}^{\dagger}p_{1\sigma} + p_{2\sigma}^{\dagger}p_{2\sigma}) + h.c. \\ &= -\frac{(pd\pi)^2}{\Delta}(d_{1\xi\sigma}^{\dagger}d_{2\eta\sigma} + d_{1\eta\sigma}^{\dagger}d_{2\xi\sigma}) + h.c. \quad \longleftarrow \quad \bigotimes \bigotimes p n i d \varepsilon f \mathcal{H} \mathcal{H} \\ &= -t(c_{1\xi\sigma}^{\dagger}c_{2\eta\sigma} + c_{1\eta\sigma}^{\dagger}c_{2\xi\sigma}) + h.c. \quad \longleftarrow \quad t = \frac{(pd\pi)^2}{\Delta} \quad (d^{\dagger} \longrightarrow c^{\dagger}) \\ &= -t \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} \end{split}$$

格子上で足し合わせ、相互作用を加える。
$H = H_{so} + H_t + H_U + H_{U'} + H_J + H_{J'}$
$H_t = -t \sum_{i,j} \sum_{\sigma} (c^{\dagger}_{i\xi\sigma} c_{j\eta\sigma} + c^{\dagger}_{i\eta\sigma} c_{j\xi\sigma}) + h.c.$
$H_U = U \sum_i \sum_{\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow},$ 同一軌道内の斥力
$H_{U'} = \frac{U'}{2} \sum_{i} \sum_{\alpha \neq \beta} (n_{i\alpha\uparrow} + n_{i\alpha\downarrow}) (n_{i\beta\uparrow} + n_{i\beta\downarrow}),$ 異なる軌道間の斥力
$H_{J} = -\frac{J}{2} \sum_{i} \sum_{\alpha \neq \beta} \sum_{\sigma,\sigma'} c^{\dagger}_{i\alpha\sigma} c_{i\alpha\sigma'} c^{\dagger}_{i\beta\sigma'} c_{i\beta\sigma},$ $\mathbf{\hat{\nabla}} \mathbf{\hat{\mu}} \mathbf{H} \mathbf{\Gamma} \mathbf{f} \mathbf{H}$
$H_{J'} = \frac{J'}{2} \sum_{i} \sum_{\alpha \neq \beta} \sum_{\sigma \neq \sigma'} c^{\dagger}_{i\alpha\sigma} c^{\dagger}_{i\alpha\sigma'} c_{i\beta\sigma'} c_{i\beta\sigma} {\sim} \mathcal{T} $
U = U' + 2J, J = J'

t_2 電子系を表す多軌道Hubbard模型

- ・6×6行列は、解くのが大変。
- J_{eff} =1/2軌道に射影してしまえば、
 いいのでは?
- 実はそう単純ではない。運動項が ゼロとなってしまう!
 => 多体系でなくなってしまう。

Interference

$$\begin{aligned} &\langle \varphi_{1+}(1) \mid H_{t,1-2} \mid \varphi_{1+}(2) \rangle \\ &= \frac{1}{3} \sum_{\sigma} \langle 0 \mid (c_{1\xi\downarrow} - ic_{1\eta\downarrow} + c_{1\zeta\uparrow}) (c_{1\xi\sigma}^{\dagger} c_{2\eta\sigma} + c_{1\eta\sigma}^{\dagger} c_{2\xi\sigma}) (c_{2\xi\downarrow}^{\dagger} + ic_{2\eta\downarrow}^{\dagger} + c_{2\zeta\uparrow}^{\dagger}) \mid 0 \rangle \\ &= \frac{1}{3} \sum_{\sigma} \langle 0 \mid (ic_{1\xi\downarrow} c_{1\xi\sigma}^{\dagger} c_{2\eta\sigma} c_{2\eta\downarrow}^{\dagger} - ic_{1\eta\downarrow} c_{1\eta\sigma}^{\dagger} c_{2\xi\sigma} c_{2\xi\downarrow}^{\dagger}) \mid 0 \rangle \\ &= \frac{i - i}{3} = 0 \\ &\langle \varphi_{1+}(1) \mid H_{t,1-2} \mid \varphi_{1-}(2) \rangle = 0 \\ &\langle \varphi_{1-}(1) \mid H_{t,1-2} \mid \varphi_{1+}(2) \rangle = 0 \\ &\langle \varphi_{1-}(1) \mid H_{t,1-2} \mid \varphi_{1-}(2) \rangle = 0 \end{aligned}$$

・多体問題を扱いたいなら、6軌道を扱う必要あり。

•ホール描像に移る(t_2 軌道にホールが1個)。

 $U > \zeta > J \sim t$

•2次摂動により、有効Hamiltonianを求める。 $H = H_0 + H'$ $H_0 = H_{so} + H_U + H_{U'}$ $H' = H_t + H_I + H_{I'}$

(*t*₂)⁴の電子状態

・ホールが、2個入った状態の波動関数。

 $\varphi(^{1}A_{1}) = \frac{1}{\sqrt{3}} (c^{\dagger}_{\xi\uparrow}c^{\dagger}_{\xi\downarrow} + c^{\dagger}_{\eta\uparrow}c^{\dagger}_{\eta\downarrow} + c^{\dagger}_{\zeta\uparrow}c^{\dagger}_{\zeta\downarrow}) \mid 0\rangle,$ $\varphi(^{1}E, u) = \frac{1}{\sqrt{6}} (-c^{\dagger}_{\xi\uparrow}c^{\dagger}_{\xi\downarrow} - c^{\dagger}_{\eta\uparrow}c^{\dagger}_{\eta\downarrow} + 2c^{\dagger}_{\zeta\uparrow}c^{\dagger}_{\zeta\downarrow}) \mid 0\rangle,$ $\varphi(^{1}E, v) = \frac{1}{\sqrt{2}} (c^{\dagger}_{\xi\uparrow} c^{\dagger}_{\xi\downarrow} - c^{\dagger}_{\eta\uparrow} c^{\dagger}_{\eta\downarrow}) \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = 1, \alpha) = c^{\dagger}_{\eta\uparrow}c^{\dagger}_{\zeta\uparrow} \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = 0, \alpha) = \frac{1}{\sqrt{2}} (c^{\dagger}_{\eta\uparrow} c^{\dagger}_{\zeta\downarrow} - c^{\dagger}_{\zeta\uparrow} c^{\dagger}_{\eta\downarrow}) \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = -1, \alpha) = c^{\dagger}_{n\downarrow}c^{\dagger}_{\zeta\downarrow} \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = 1, \beta) = c^{\dagger}_{\mathcal{L}\uparrow}c^{\dagger}_{\mathcal{E}\uparrow} \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = 0, \beta) = \frac{1}{\sqrt{2}} (c^{\dagger}_{\zeta\uparrow} c^{\dagger}_{\xi\downarrow} - c^{\dagger}_{\xi\uparrow} c^{\dagger}_{\zeta\downarrow}) \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = -1, \beta) = c^{\dagger}_{\zeta \downarrow} c^{\dagger}_{\xi \downarrow} \mid 0 \rangle,$ $\varphi(^{3}T_{1}, M = 1, \gamma) = c_{\mathcal{E}\uparrow}^{\dagger} c_{n\uparrow}^{\dagger} \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = 0, \gamma) = \frac{1}{\sqrt{2}} (c^{\dagger}_{\xi\uparrow} c^{\dagger}_{\eta\downarrow} - c^{\dagger}_{\eta\uparrow} c^{\dagger}_{\xi\downarrow}) \mid 0\rangle,$ $\varphi(^{3}T_{1}, M = -1, \gamma) = c^{\dagger}_{\mathcal{E}\downarrow} c^{\dagger}_{n\downarrow} \mid 0\rangle,$ $\varphi(^{1}T_{2},\xi) = \frac{1}{\sqrt{2}} (c^{\dagger}_{\eta\uparrow}c^{\dagger}_{\zeta\downarrow} + c^{\dagger}_{\zeta\uparrow}c^{\dagger}_{\eta\downarrow}) \mid 0\rangle,$ $\varphi(^{1}T_{2},\eta) = \frac{1}{\sqrt{2}} (c^{\dagger}_{\zeta\uparrow}c^{\dagger}_{\xi\downarrow} + c^{\dagger}_{\xi\uparrow}c^{\dagger}_{\zeta\downarrow}) \mid 0\rangle,$ $\varphi(^{1}T_{2},\zeta) = \frac{1}{\sqrt{2}} (c^{\dagger}_{\xi\uparrow}c^{\dagger}_{\eta\downarrow} + c^{\dagger}_{\eta\uparrow}c^{\dagger}_{\xi\downarrow}) \mid 0\rangle$

[r(1)

•多軌道Hubbard模型

$$H = H_0 + H'$$
$$H_0 = H_{so} + H_U + H_{U'}$$
$$H' = H_t + H_J + H_{J'}$$

2次摂動により、有効Hamiltonianを求める。

$$H_{1-2} = -\sum_{\alpha\beta} \sum_{n \neq 0} \frac{\langle \alpha \mid H_{t,1-2} \mid n \rangle \langle n \mid H_{t,1-2} \mid \beta \rangle}{E_n - E_0} \mid \alpha \rangle \langle \beta \mid$$

$$H_{1-2} = -\frac{4}{3}J(\frac{t}{U})^2 S_1^z S_2^z = -J_{\rm K}S_1^z S_2^z$$

Kitaev型相互作用

 Kitaev型相互作用の特徴 強磁性的、異方的、(J/U)」_H

Kitaev模型の解

Kitaev

- A. Kitaev, Ann. Phys. 321, 2 (2006).
- X.-Y. Feng, G.-M. Zhang, and T. Xiang, Phys. Rev. Lett. 98, 087204 (2007).
- H.-D. Chen and J. Hu, Phys. Rev. B 76, 193101 (2007).
- H.-D. Chen, and Z. Nussinov, J. Phys. A Math. Theor. 41, 075001 (2008).
- G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett. 98, 247201 (2007).

$$H = -J\left(\sum_{x-link} S_i^x S_j^x + \sum_{y-link} S_i^y S_j^y + \sum_{z-link} S_i^z S_j^z\right)$$

- Kitaev模型は、2次元多体系にも関わらず厳密に解ける。
 ここでは、新しい解法に基づいて概略を紹介する。
 - その前に、1次元量子スピン系の復習

$$- Jordan-Wigner変換 -$$

$$S_{j}^{+} = f_{j}^{\dagger} e^{i\pi \sum_{l < j} f_{l}^{\dagger} f_{l}}$$

$$S_{j}^{z} = f_{j}^{\dagger} f_{j} - 1/2$$

$$j$$

$$H_{XXZ} = \sum_{j} J(S_{j}^{x}S_{j+1}^{x} + S_{j}^{y}S_{j+1}^{y}) + J_{z}S_{j}^{z}S_{j+1}^{z}$$
$$= \sum_{j} \frac{1}{2} J(f_{j}^{\dagger}f_{j+1} + f_{j+1}^{\dagger}f_{j}) + J_{z}(f_{j}^{\dagger}f_{j} - \frac{1}{2})(f_{j+1}^{\dagger}f_{j+1} - \frac{1}{2})$$
$$\mathbf{\overline{H}}\mathbf{\underline{F}}\mathbf{\underline{F}}\mathbf{H}$$

— Jordan-Wigner変換

$$\sigma_{jl}^{+} = 2f_{jl}^{\dagger}e^{i\pi(\sum_{i,k

$$\sigma_{jl}^{z} = 2f_{jl}^{\dagger}f_{jl} - 1$$$$

. .

$$H = -J_{x} \sum_{x-link} \sigma_{i}^{x} \sigma_{j}^{x} - J_{y} \sum_{y-link} \sigma_{i}^{y} \sigma_{j}^{y} - J_{z} \sum_{z-link} \sigma_{i}^{z} \sigma_{j}^{z}$$

$$= J_{x} \sum_{x-link} (f^{\dagger} - f)_{A} (f^{\dagger} + f)_{B} - J_{y} \sum_{y-link} (f^{\dagger} - f)_{B} (f^{\dagger} - f)_{A} - J_{z} \sum_{z-link} (2f^{\dagger}f)_{B} (2f^{\dagger}f - 1)_{A}$$

$$= iJ_{x} \sum_{x-link} c_{A}c_{B} - iJ_{y} \sum_{y-link} c_{B}c_{A} - iJ_{z} \sum_{z-link} id_{B}d_{A}c_{B}c_{A}$$

$$\leftarrow \Box O Majorana$$

$$= iJ_{x} \sum_{x-link} c_{A}c_{B} - iJ_{y} \sum_{y-link} c_{B}c_{A} - iJ_{z} \sum_{z-link} id_{B}d_{A}c_{B}c_{A}$$

— Jordan-Wigner変換

$$\sigma_{jl}^{+} = 2f_{jl}^{\dagger}e^{i\pi(\sum_{i,k

$$\sigma_{jl}^{z} = 2f_{jl}^{\dagger}f_{jl} - 1$$$$

Majorana粒子 $c_{A} = i(f^{\dagger} - f)_{A}, d_{A} = (f^{\dagger} + f)_{A}$ $c_{B} = (f^{\dagger} + f)_{B}, d_{A} = i(f^{\dagger} + f)_{B}$ ($m^{2} = 1, m^{\dagger} = m, \{m_{1}, m_{2}\} = 0$)

- W_p の固有値(=±1)は良い量子数(N/2個)。 Hilbert空間は(W_1, W_2, \cdots)で特徴付けられる。
- 実は、(W₁, W₂, …) = (1, 1, …)が基底状態 (ボルッテクスなし)。Kitaevはしらみつぶし にエネルギーを計算したが、Lieb (1994)の 定理を使うことでも示せる。
- VortexはMajorana粒子dと関係。

 $W_p = \underbrace{(id_1d_6)(id_3d_4)}_{1}$

 $H = -J_x \sum_{x-link} \sigma_i^x \sigma_j^x - J_y \sum_{y-link} \sigma_i^y \sigma_j^y - J_z \sum_{z-link} \sigma_i^z \sigma_j^z$ $- \mathbf{R存量}($ **フラックス**) $W_p = \sigma_1^y \sigma_2^z \sigma_3^x \sigma_4^y \sigma_5^z \sigma_6^x$ $[H, W_p] = 0, [W_p, W_{p'}] = \delta_{p,p'}$

- W_p の固有値(=±1)は良い量子数(N/2個)。 Hilbert空間は(W_1, W_2, \cdots)で特徴付けられる。
- 実は、(W₁, W₂, …) = (1, 1, …)が基底状態 (ボルッテクスなし)。Kitaevはしらみつぶし にエネルギーを計算したが、Lieb (1994)の 定理を使うことでも示せる。
- ・ VortexはMajorana粒子dと関係。

 $W_p = (\underbrace{id_1d_2}_{1})(\underbrace{id_5d_4}_{1})$

$$H = iJ_x \sum_{x-link} c_{\mathbf{A}}c_{\mathbf{B}} - iJ_y \sum_{y-link} c_{\mathbf{B}}c_{\mathbf{A}} - iJ_z \sum_{z-link} c_{\mathbf{B}}c_{\mathbf{A}}$$

• フェルミ粒子を導入 $a = (c_{\mathrm{A}} + ic_{\mathrm{B}})/2, a^{\dagger} = (c_{\mathrm{A}} - ic_{\mathrm{B}})/2,$

$$H = \sum_{q} (\epsilon_q a_q^{\dagger} a_q + i \frac{\Delta_q}{2} (a_q^{\dagger} a_{-q}^{\dagger} + h.c.)) \qquad \begin{cases} \epsilon_q = 2J_z - 2J_x \cos q_x - 2J_y \cos q_y, \\ \Delta_q = 2J_x \sin q_x + 2J_y \sin q_y. \end{cases}$$

- Bogoliubov変換。固有値を計算 $E_q = \frac{1}{\sqrt{\epsilon_q^2 + \Delta_q^2}}$.
- ・ N/2個の電子を詰める $|g\rangle = \prod_{k} (u_{k} + v_{k}a_{k}^{\dagger}a_{-k}^{\dagger})|0\rangle$ gapless gappless gapped $J_{z}=l, J_{x}=J_{y}=0$ $J_{z}=l, J_{x}=J_{y}=0$ $J_{z}=l, J_{x}=J_{y}=0$ $J_{z}=l, J_{x}=J_{y}=0$ $J_{z}=l, J_{x}=J_{y}=0$ $J_{z}=l, J_{x}=J_{y}=0$ $J_{z}=l, J_{x}=J_{y}=0$
- NNNでスピン相関ないことを示せる。

対称性の破れを伴わないスピン液体

フェルミオン励起 (c)

- ・A相:フェルミオンギャップあり。Vortexは可換 エニオン(ギャップあり)。
- ・B相:フェルミオンは、ギャップレス。Vortexは (磁場下)で非可換エニオン(ギャップあり)。
- エニオンは、トポロジカル量子コンピュータへ J_x=1, 応用可能。

Kitaev模型: Thermodynamics

Nasu, arXiv:1506.01514

◆ Na₂IrO₃の有効模型は、Kitaev模型。

◆ Majorana粒子を導入して、厳密に解ける。
 基底状態はスピン液体。

◆素励起は、エニオン。

◆ Majorana粒子は、実験的に観測できる。

Na₂IrO₃の物性: 単結晶育成

Flux method

• Na_2CO_3 : $IrO_2 = 50$: 1 inside a Pt crucible.

 Kept at 1050 C for 6 hours, cooled to 1000 C for 0.5 hours, and then cooled to 800 C for 200 hours.

Ye, PRB (2012). Chun, Nat. Phys. (2015).

Na₂IrO₃の物性: 電気抵抗率・磁化率

Singh, Gegenwart, PRB (2010).

Mott絶縁体

磁化率に異常, 15 K. (反強磁性秩序?)

Na₂IrO₃の物性:比熱

Singh, Gegenwart, PRB (2010).

- 15 K転移は、2次相転移。
- ダブルピークの兆候は無い。

Na₂IrO₃の物性: 磁気構造

Stripe

(q = 0, 1, 0.5)

- Q = (0, 1, 0.5)から、Neel秩序は排除.
- 様々な反射の強度から、zigzag秩序で あることが分かる(強磁性的ボンド)。
- ただし、スピンの向きについては、分からない。

Resonant X-ray diffraction

- Ir is a neutron-absorbing element.
- *L* edge of Ir, 11.2 keV~1.1 A.
- Dipole allowed \rightarrow Resonantly enhanced magnetic signal.
- Moment direction sensitive.

$$F = \sum_{i} \vec{m}_{i} \cdot \vec{\varepsilon}_{i} \times \vec{\varepsilon}_{s} e^{2\pi i k \cdot r_{i}}$$

Na₂IrO₃の物性: 磁気構造

Na₂IrO₃の物性: 磁気構造

- なぜ、3回対称性が破れているのか?
- 空間群はmonoclinicのC2/m $a \neq b \neq c, \alpha = 90, \beta \neq 90, \gamma = 90$

Resonant X-ray diffraction

ESRF, ID20-UPBL06

- Ir is a neutron-absorbing element.
- *L* edge of Ir, 11.2 keV~1.1 A.
- Dipole allowed nature
- → Resonantly enhanced magnetic signal.

Review: Ishi, Tohyama, Mizuki, JPSJ (2013).

Na₂IrO₃の物性: 軌道状態

Trigonal 歪とd-d 直接交換を取り込んだ理論

$$\begin{aligned} H &= \sum_{\langle ij \rangle \in \alpha \beta(\gamma)} \left[J \vec{S}_i \cdot \vec{S}_j + K S_i^{\gamma} S_j^{\gamma} + \Gamma(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha}) \right] \\ &+ \Gamma' \sum_{\langle ij \rangle \in \alpha \beta(\gamma)} \left[S_i^{\alpha} S_j^{\gamma} + S_i^{\gamma} S_j^{\alpha} + S_i^{\beta} S_j^{\gamma} + S_i^{\gamma} S_j^{\beta} \right]. \end{aligned}$$

 $J = \sin \theta \cos \phi, \quad K = \sin \theta \sin \phi, \quad \Gamma = \cos \theta,$

Rau, arXiv:1408.481

第一原理計算(Monoclinic歪+Trigonal歪+d-d直接交換)

--- Exp.

300

400

 χ_{ab}

200

 $T(\mathbf{K})$

0

0

100

$$\begin{array}{c|c} \hline & & & \\ \hline \mathcal{J}_{Z} \ (\text{meV}) & K & J & I_{1} & I_{2} \\ & & -30.7 & 4.4 & -0.4 & 1.1 \\ \hline \mathcal{J}_{X,Y} \ (\text{meV}) & K' & J' & J'' & I'_{1} & I'_{2} & I''_{2} \\ & & -23.9 & 2.0 & 3.2 & 1.8 & -8.4 & -3.1 \end{array}$$

Yamaji, PRL (2014).

Na₂IrO₃の物性: 磁気揺らぎ

Chung, Nat. Phys. (2015).

- Diffuse scattering at $T = 17 \text{ K} (> T_N)$
- Q = (0, 1, 3.5)
- π in $\sigma' + \pi'$ out

Na₂IrO₃の物性: 磁気揺らぎ

$$S_{xx} + S_{yy} \qquad S_{xx} + S_{zz}$$

$$\int_{0}^{a} \Psi = 0^{\circ} \qquad 30^{\circ} \qquad 60^{\circ} \qquad 90^{\circ} \qquad 120^{\circ}$$

$$\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}$$

- 実空間のスピン方向と磁気波数Qが1:1に相関。
- 異方的交換相互作用が働いていることの実証

Chung, Nat. Phys. (2015).

Intensity (a.u.)

関連物質CalrO₃における Kitaev型相互作用
Superexchange interaction in $J_{eff} = 1/2$ state

Jackeli, Khaliullin, PRL (2009), Shitade, PRL (2009).

$$|\psi \pm \rangle = |xy\pm \rangle \pm |yz\mp \rangle + i|zx\mp \rangle$$

Corner-sharing (180° bond) - Edge-sharing (90° bond)

Isotropic Antiferromagnetic $J_1 \vec{S}_i \cdot \vec{S}_j \quad (J_1 \approx t^2 / U)$ $\int \frac{f_{x}}{f_{x}} = \int \frac{f_{x}}{f_{x}}$

Anisotropic Ferromagnetic $-J_2 S_i^z S_j^z \quad (J_2 \approx t^2 J_H / U^2)$

Magnetic structure of CalrO₃

Ohgushi, PRL (2013).

- Canting angle, $\theta \sim 4^{\circ}$.
- $J_2/J_1 \sim \theta/\alpha \sim 0.15$.

RIXS for CalrO₃: Magnetic excitations

RIXS for CalrO₃: Magnetic excitations

- $H = J_{1,H} S_i \cdot S_j J_{2,K} S_i^z S_j^z + J_{2,H} S_i \cdot S_j$
- Spin wave, $E = 2S \sqrt{(J_{1,H} + J_{2,K} J_{2,H} + J_{2,H} \cos k_x)^2 (J_{1,H} \cos k_z/2)^2)}$

- $J_{1,H} = 152 \pm 10 \text{ meV}, J_{2,K} = 8.0 \pm 1.2 \text{ meV}, J_{2,H} = 2.2 \pm 0.1 \text{ meV}.$
- $J_{2, K}/J_{1,H} = J_H/U = 0.05$. $(J_{2,K}/J_{1,H} = 0.15$ from static order)
- Role of other anisotropic exchange terms and single-ion anisotropy.

その後の展開:理論

• Kitaev模型の動的スピン相関厳密解。

Knolle, PRL (2014).

・ Kitaev模型の3次元系への拡張。 Mandal, PRB (2009).

• レーザー誘起のトポロジカル量子相の研究。 Sato, arXiv:1404.2010

• 物質探索(Li₂IrO₃, RuCl₃)

Takayama, PRL (2015); Majumder PRB (2015).

• 物質探索(Li₂IrO₃, RuCl₃)

Takayama, PRL (2015); Majumder PRB (2015).

金属への展開。

Ohgushi, PRB (2006); PRL (2013); PRB (2013).

• 物質探索(Li₂IrO₃, RuCl₃)

Takayama, PRL (2015); Majumder PRB (2015).

金属への展開。

Ohgushi, PRB (2006); PRL (2013); PRB (2013).

- ◆ Na₂IrO₃では、理想からのずれによりスピン 液体は実現していない。
- ◆ zigzag型の磁気秩序は、精密な理論で明ら かにされている。
- ◆ Kitaev型相互作用がdominant(例CalrO₃)。

◆ 歪みのない新物質開拓が重要。

◆ 強相関電子物性(超伝導•磁性•量子 Hall効果)が、劇的に発現する。 ◆ 遷移金属化合物は、一見複雑だが、キ チンと筋道立てて理解できる。 ◆理論(数理物理・場の理論・計算物理)と 実験(合成・基礎物性・放射光)の連携。

ようこそ、遷移金属化合物の世界へ!!