

銅酸化物、重い電子系との比較

超伝導ギャップ構造

量子臨界点

銅酸化物、重い電子系との比較

超伝導ギャップ構造

量子臨界点

High- T_c cuprates

Possible High T_c Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Received April 17, 1986

Metallic, oxygen-deficient compounds in the Ba-La-Cu-O system, with the composition Ba_xLa_{5-x}Cu₅O_{5 (3-y)} have been prepared in polycrystalline form. Samples with x = 1 and 0.75, y > 0, annealed below 900 °C under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound. Upon cooling, the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally an abrupt decrease by up to three orders of magnitude occurs, reminiscent of the onset of percolative superconductivity. The highest onset temperature is observed in the 30 K range. It is markedly reduced by high current densities. Thus, it results partially from the percolative nature, bute possibly also from 2D superconducting fluctuations of double perovskite layers of one of the phases present.

Superconductivity in CuO₂ planes

 $La_{2-x}Sr_{x}CuO_{4}$

J. G. Bednorz and K.A. Müller, Zeitschrift für Physik B 64, 189 (1986).

Fe-based high- T_c superconductors

Year

Superconductivity in Fe-Pnictides — Discovery

Published on Web 02/23/2008

Iron-Based Layered Superconductor La[$O_{1-x}F_x$]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Y. Kamihara *et al.*, JACS, **130**, 3296 (2008).

Hosono's group was not looking for superconductor, but trying to create new kind of transparent semiconductors for flat-panel display.

		and the second se		
LaFePO	$T_{\rm c}$ =4 K			
LaFeP(O,F)	<i>T</i> _c =7 K			
LaFeAs(O,F)	<i>T</i> _c =26 K	Only two months!		
SmFeAs(O,F)	<i>T</i> _c =56 K ✔			

Fe-based high- T_c superconductors

Ogino et al. (2009)

Fe-based high- T_c superconductors

Are iron-pnictides an Electron-Phonon Superconductor?

$$T_c \sim \omega_D e^{-rac{1}{\lambda}}$$
 $\omega_D \sim 200 \ {
m K}$
 ω_D Debye frequency $\lambda \sim 0.2$
 λ , Electron-phonon coupling Comparable to the conventional metals

$$\Box$$
 $T_c \sim 1 \text{ K}$

Electron-phonon coupling is not sufficient to explain superconductivity in the whole family of Fe-As based superconductors

L. Boeri, O.V. Dolgov, and A.A. Golubov, PRL 101, 026403 (2008).

Why are Fe-based HTSC important?

1. A new class of high temperature superconductors

They knocked the cuprates off their pedestal as a unique class of high temperature superconductors.

2. A new family of unconventional superconductors

A possible new mechanism of high- T_c superconductivity

Superconductivity is induced by suppressing a magnetically ordered phase Magnetic fluctuations may bind the Cooper pairs

	Pnictide	Cuprate	Heavy Fermion
Electron correlation	strong <	strong <	very strong
Fermi surface	simple 2D	Very simple 2D	Complicated 3D
Magnetic structure	simple	simple	complicated
Physics	Multi-orbital	Mott	Kondo

Superconductivity in 2D planes

Enhanced fluctuations \rightarrow suppression of magnetic order

Superconductivity occurs in the vicinity of magnetic order In Fe-pnictides, structural (T_s) and AFM transition (T_N) lines follow closely each other

Superconductivity induced by doping holes or electrons

Ground state can be tuned without doping carriers ($Ba_{1-x}K_x$)Fe₂As₂ Ba(Fe_{1-x}Co_x)₂As₂ electron-doping $x [Co]_{0.2}^{Co} C_{0.2}^{Co} C_{0.4}^{Co} C_{0.6}^{Co} C_{0.8}^{O} 1$

0.4

0.6

x [P] ^{0.8}

 $BaFe_2(As_{1-x}P_x)_2$

isovalent

substitution

Large crystal field ~2-3 eV

Small crystal field (~500meV)

Well separated hole and electron bands

Only hole band

N. E. Hussey *et al.,* Nature (2003). BaFe₂As₂

銅酸化物、重い電子系との比較

超伝導ギャップ構造

量子臨界点

Fe-pnictides

Fe-pnictides

disconnected Fermi surfaces

Superconducting gap structure of iron pnictides

Gap structure is closely related to the pairing interaction **Full gap or nodal?**

Full gap

Does the gap change sign between the hole and electron pockets?

Is the major pairing interaction repulsive or attractive?

Nodal

Presence of repulsive interaction.

Is the node accidental or symmetry protected?

Accidental : presence of two (or more) competing pairing interactions

 Pairing due to purely repulsive electronic interaction (enhanced by spin fluctuations)

• Pairing due to attractive interaction caused by charge/orbital fluctuations.

Chicken or the egg?

Spin fluctuations or orbital fluctuations?

ng

Gap structure of iron pnictides

Full gap or nodal?

Full gap superconductivity

hole doped Ba_{1-x}K_xFe₂As₂

K. Hashimoto, et al., PRL 102, 027001 (2009).

Thermal conductivity

Penetration depth

ARPES

H. Ding et al., EPL 83, 47001 (2008).

Superconductivity in BaFe₂As₂ systems

Superconductivity in BaFe₂As₂ systems

Superconducting gap structure of BaFe₂As₂ systems

Superconducting gap structure of BaFe₂As₂ systems

SC gap structure in heavily electron doped systems

Superconducting gap structure of BaFe₂As₂ systems

Sign change or no sign change?

Spin fluctuations

Orbital fluctuations (Quadrupole fluctuation)

- 1. Phase sensitive test
- 2. NMR
- 3. Neutron scattering
- 4. Quasi-particle interference
- 5. Impurity effect

S+- or S++?: Phase sensitive tests

week ending

5 JUNE 2009

d-wave

FIG. 3. A schematic view of the tunneling geometry for the proposed bicrystal experiments. Left: an *ab*-plane orientation with two possible lead orientations; right: a *c*-axis orientation.

Practically very difficult to fabricate such junctions

S+- or S++?: Phase sensitive tests

C.T. Chen et al. Nature Phys. (10)

Experiments have been performed on polycrystals

Sign change or no sign change?

Quasiparticle excitations from the SC ground state

$$\begin{split} \gamma_{k0}^{\dagger} &= u_k c_{k\uparrow}^{\dagger} - v_k c_{-k\downarrow} \\ \gamma_{k1}^{\dagger} &= u_k c_{-k\downarrow}^{\dagger} + v_k c_{k\uparrow} \\ |u_k|^2 &= \frac{1}{2} \left(1 + \frac{\xi_k}{\sqrt{\Delta_k^2 + \xi_k^2}} \right) \quad |v_k|^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{\sqrt{\Delta_k^2 + \xi_k^2}} \right) \quad \xi_k \equiv \frac{\hbar^2 k^2}{2m} - \varepsilon_F \end{split}$$

B-quasiparticle: a superposition of an electron and a hole

$$\mathbf{k}\sigma \to \mathbf{k}'\sigma' \\ \mathcal{H}_1 = \sum_{k\sigma,k'\sigma'} B_{k\sigma,k'\sigma'} c^{\dagger}_{k\sigma} c_{k'\sigma'} \int_{a}^{B_{k\sigma,k'\sigma'}} g_{k\sigma'} c^{\dagger}_{k\sigma} c_{k'\sigma'} c_{k\sigma'} c_{k$$

Coherence factor

Scattering of QPs
(
$$u_k u_{k'} \pm v_k v_{k'}$$
)² = $\frac{1}{2} \left(1 \pm \frac{\Delta^2}{E_k E_{k'}} \right)$
Creation and annihilation
of two QPs
($v_k u_{k'} \pm u_k v_{k'}$)² = $\frac{1}{2} \left(1 \pm \frac{\Delta^2}{E_k E_{k'}} \right)$

S+- or S++?: NMR

S+- or S++?: NMR

However, the HS peak readily disappears by inelastic scatterings, eg. Pb. Absence of the coherence peak is not evidence of S_{+-}

S+- or S++?: Neutron resonance peak at Q

In the superconducting state

$$\operatorname{Im}\chi_{0}(\mathbf{q},\omega) = \frac{1}{4} \frac{1}{(2\pi)^{3}} \int d^{3}k \left(1 - \frac{\underline{\Delta_{k} \Delta_{k+q}}}{E_{k+q} E_{k}}\right) \delta(\omega - E_{k+q} - E_{k}) \qquad E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}}$$

The coherence factor becomes 2 for $\Delta_{k+Q} = -\Delta_k$

Sharp resonance peak at ω_{res} < 2 Δ

Stock et al., PRL 100, 087001 (2008)

S+- or S++?: Neutron resonance peak at Q

In the superconducting state

$$\operatorname{Im}\chi_{0}(\mathbf{q},\omega) = \frac{1}{4} \frac{1}{(2\pi)^{3}} \int d^{3}k \left(1 - \frac{\underline{\Delta_{k} \Delta_{k+q}}}{E_{k+q} E_{k}}\right) \delta(\omega - E_{k+q} - E_{k}) \qquad E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}}$$

The coherence factor becomes 2 for $\Delta_{k+Q} = -\Delta_k$

ARPES(bulk-sensitive):

$$\Delta_{\rm el} + \Delta_{\rm hole} \approx 11.6 {\rm meV}$$

Terashima et al., PNAS 2009

penetration depth:

$$\Delta_{
m el} + \Delta_{
m hole} pprox 8.4 {
m meV}$$
Luan *et al.*, PRL 2011

specific heat: $\Delta_{\rm el} + \Delta_{\rm hole} \approx 7 {\rm meV}$ Hardy *et al.*, EPL 2010

S+- or S++?: Neutron resonance peak at Q

In the superconducting state

$$\operatorname{Im}\chi_{0}(\mathbf{q},\omega) = \frac{1}{4} \frac{1}{(2\pi)^{3}} \int d^{3}k \left(1 - \frac{\underline{\Delta_{k} \Delta_{k+q}}}{E_{k+q} E_{k}}\right) \delta(\omega - E_{k+q} - E_{k}) \qquad E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}}$$

The coherence factor becomes 2 for $\Delta_{k+Q} = -\Delta_k$

 S_{+-} Sharp resonance peak at $\omega_{res} < 2\Delta (\Delta_{el} + \Delta_{hole})$ S_{++} Broad peak at $\omega_{res} > 2\Delta (\Delta_{el} + \Delta_{hole})$

Neutron scattering experiments can be explained by either models.

S+- or S++?: Quasiparticle interference (QPI)

sign-reversing scattering

$$\Delta_k \Delta_{k'} < 0 \qquad (u_k u_{k'} - v_k v_{k'})^2 \quad \text{large}$$

S+- or S++?: Quasiparticle interference (QPI)

Cuprate : Octet Model J. Hoffman *et al.*, Science (2002), K. McElroy, *et al.*, Nature (2003).

 $\Delta_k \text{ and } \Delta_{k+q}$ sign-preserving scattering => suppression sign-reversing scattering => enhancement

sign-preserving ($\mathbf{q}_1, \, \mathbf{q}_4, \, \mathbf{q}_5$) q_y

T. Hanaguri et al.

S+- or S++?: Quasiparticle interference (QPI)

S+- or S++?: Impurity effect

The robustness of the SC state against impurity contradicts with the S+wave state.

No conclusive experimental evidence so far

(

Are all iron-based high-T_c superconductors fully gapped?

If some are nodal

→ Presence of repulsive interaction

Accidental or symmetry protected?

If accidental

Presence of two (or more) competing pairing interactions

Superconducting gap structure of BaFe₂As₂ systems

• The presence of line nodes is a robust feature for all x.

Presence of repulsive interaction

non-phononic (magnetic) pairing interaction

Non-universal gap structure in BaFe₂As₂ systems

Gap structure of hole doped Ba_{1-x}K_xFe₂As₂

Non-universal gap structure in BaFe₂As₂ systems

Observation of node lifting by disorder

Gap symmetry in KFe₂As₂

K. Okazaki et al., Science (2012).

Gap symmetry in KFe₂As₂

Nodal s-wave

K. Okazaki et al., Science (2012).

Specific heat

F. Hardy et al. JPSJ (2013)

J.P.Reid *et al.* PRL (2012)

Non-universal gap structure in BaFe₂As₂ systems

Non-universal gap structure in BaFe₂As₂ systems

銅酸化物、重い電子系との比較

超伝導ギャップ構造

Quantum Critical Point (QCP)

Quantum Critical Point (QCP)

c field

Quantum time scale

Thermal time scale

 $\xi_{ au} < L_T$

 $\xi_{ au} > L_T$

 $L_T = \frac{\hbar}{k_B T}$

 $|\xi \propto |g - g_c|^{\nu} \qquad \xi_{\tau} \propto \xi^z$

g: pressure, chemical substitution, magnetic field S. Sachdev, Quantum Phase Transitions

(Quantum critical point)

Ordinary phase transition – driven by thermal fluctuations Quantum phase transition – driven by zero temperature quantum fluctuations associated with Heisenberg's Uncertainty Principle

Physical properties are seriously influenced by QCP at $g=g_c$.

QP excitations are well defined

Quantum Critical Point (QCP)

2.

3.

Hole doping (per Cu atom)

What lies beneath the SC dome?

Criticality avoided by the transition to the SC state

QCP lying beneath the SC dome

Superconductivity in BaFe₂As₂ systems

Superconductivity in BaFe₂As₂ systems

Ground state can be tuned without doping carriers

Doping evolution of the transport property

S. Kasahara et al., PRL (10)

See also

S. Sachdev and B. Keimer, Physics Today (11)

Hallmark of non-Fermi liquid

*T*²-dependence at *x*=0.71 Fermi-liquid behavior

Fermi surface and mass renormalization

Fermi temperature $T_{\rm F} = heF/m * k_{\rm B}$ tends to zero

H.Shishido, Y.M. et al. PRL (09)

P. Walmsley, Y.M. et al. PRL(13)

Doping evolution of the magnetic fluctuations (³¹P NMR)

 θ : Weiss temperature

 θ goes to zero at *x*~0.3

Dynamical susceptibility diverse at T=0 K.

Y. Nakai et al. PRL (10)

Doping evolution of normal electrons

We need evidence at zero temperature and zero field.

London penetration depth λ_L is the quantity that can probe the electronic structure at zero temperature limit.

Doping evolution of the London penetration depth at T=0

The data represents the behavior at the zero temperature limit.

What lies beneath the SC dome?

K. Hashimoto *et* Science (12)

Striking enhancement of superfluid mass

K. Hashimoto, Y.M. et al. Science (12), PNAS (13)

S. Kasahara, Y.M. *et al.* PRB (10) Enhancement of normal electron mass

H. Shishido, Y.M. et al. PRL (10), P. Walmsley, Y.M. et al. PRL(13)

Vanishing of Weiss temperature

Y. Nakai et al. PRL (10)

QCP lies beneath the superconducting dome

T. Shibauchi, A. Carrington and Y. M., Annu. Rev. Condens. Matter Phys. 5, 113 (14)

- 1. The QCP is the origin of the non-Fermi liquid behavior above T_c .
- 2. Microscopic coexistence of superconductivity and SDW.
- 3. The quantum critical fluctuations help to enhance the high- T_c superconductivity.

Singularity of the London penetration depth at QCP

1) Mass renormalization of superfluid by critical magnetic fluctuations

A. Levchenko, M. G. Vavilov, M. Khodas, and A. V. Chubukov, PRL (13)

T. Nomoto and H. Ikeda, PRL (13)

2) SDW fluctuations + nematic order

D.Chowdhury, B. Swingle, E. Berg, and S. Sachdev, PRL (13)

Doping evolution of the London penetration depth at T=0

Superfluid density n_s/m^* at (putative) QCP Contrasting behavior between pnictides and cuprates

Bi:2212 : broad maximum in $1/\lambda_L^2(0)$ (enhancement of n_s/m^*) at $p\sim0.19$ BaFe₂(As_{1-x}P_x)₂ : sharp peak in $\lambda_L^2(0)$ (suppression of n_s/m^*) at x=0.3

What lies beneath the SC dome?

Striking enhancement of superfluid mass

Vanishing of Weiss temperature Y. Nakai *et al*. PRL (10)

S. Kasahara et al. PRB (10)

Enhancement of normal electron mass

QCP lies beneath the superconducting dome

H. Shishido et al. PRL (10), P. Walmsley et al. PRL(13)

T. Shibauchi, A. Carrington and Y. Matsuda, Annu. Rev. Condens. Matter Phys. 5, 113 (14)

- 1. The QCP is the origin of the non-Fermi liquid behavior above T_c .
- 2. Microscopic coexistence of superconductivity and SDW.
- 3. The quantum critical fluctuations help to enhance the high- T_c superconductivity.