

「スピン流で観る物理現象」

大阪大学 大学院理学研究科 物理学専攻 新見 康洋

スピントロニクスとは?

スピン + エレクトロニクス → メモリ産業と深くつながっている!

スピン流

スピン流: スピン角運動量の流れ

1. スピン偏極電流

2. 純スピン流

スピン軌道相互作用の強い非 磁性体、トポロジカル絶縁体

磁性絶縁体

Y. Kajiwara *et al.*, Nature **464**, 262 (2010).

スピン流

純スピン流とスピン波スピン流は正味の電荷の流れ を伴っていない!!!

1. 低消費電力素子への応用 (応用という観点で重要)

スピン構造に敏感なプローブとして利用
 (基礎研究、特に複雑なスピン構造をもつ物性の解明に役立つ)

スピン流は、保存量ではない!! 観測するためには、保存量に変換する必要がある。

スピンホール効果

スピンホール効果の電気的検出

逆スピンホール効果 (ISHE)

電圧として観測できる

 $\mathbf{I}_{\mathbf{S}} \propto \mathbf{I}_{\mathbf{C}} \times \mathbf{S}$

非磁性体中ではV_H = 0

 $\alpha_{\rm H} \equiv \frac{J_{\rm S}}{T} = \frac{\rho_{\rm SHE}}{T}$ 変換効率: スピンホール角

金属中でのスピンホール効果の観測

逆スピンホール効果の電気的検出

S. O. Valenzuela and M. Tinkham, Naure 442, 176 (2006).

スピンポンピング法を用いた手法

E. Saitoh et al., Appl. Phys. Lett. 88, 182509 (2006).

非局所スピン流注入

逆スピンホール効果

Y. Niimi et al., Phys. Rev. B 89, 054401 (2014).

スピン吸収法を用いた正スピンホール効果の測定

正スピンホール効果

Y. Niimi et al., Phys. Rev. B 89, 054401 (2014).

電流端子と電圧端子を入れ替えるだけで、正スピンホール効果の測定も可能。

外因性スピンホール効果(Cu+Bi)

✓ 超伝導スピンホール効果

▲スピンホール効果で観るフラストレート磁性

・ 強磁性体転移温度近傍でのスピン揺らぎ

1 1

12

超伝導スピンホール効果

T. Wakamura, Y. N. et al., Nat. Mater. 2015.

超伝導スピンホール効果

🧚 Pyに流す電流を小さくするだけで、2000倍に!

超伝導スピンホール効果のメカニズム ~1~

- 準粒子はλ_Q(~1 μm)まで生き残れる。
 λ_Qよりも十分距離を離すと、信号が消滅!
- > 準粒子の抵抗は、 ρ_{xx} から $\rho_{qp} = \rho_{xx}/f_0(\Delta) = \rho_{xx}(\exp(\Delta/k_B T)+1)$ に増大する。

超伝導スピンホール効果のメカニズム~2~

非局所電流と電子温度

▶ 非局所電流 / と電子温度 T は等価。

✓ 超伝導スピンホール効果

▲スピンホール効果で観るフラストレート磁性

・ 強磁性体転移温度近傍でのスピン揺らぎ

フラストレート系(スピングラス)

 $Cu_{100-x}Mn_x$

S. Nagata et al., Phys. Rev. B 19, 1633 (1979).

18

🦎 フラストレートした系に純スピン流を注入するとどうなるか?

 $Cu_{97}Mn_3$ のスピンホール効果

∮ スピンホール効果は観測されない!

→ スピンホール効果を観測するためには、スピンを散乱させる機構が必要。 だからBiをスピン散乱体として加える! 19

CuMnBiの磁化測定

🖡 Biを添加しても T_g = 10 Kで典型的なスピングラス状態を示す。

Cu₉₈Mn_{1.5}Bi_{0.5}のスピンホール効果

・ CuBiの∆R_{SHE}は温度に対して一定。一方、CuMnBiの∆R_{SHE}は温度変化する。 ²¹

∮ T = 50 Kでは、CuBiとCuMnBiに違いはない。このことは、Bi不純物による外因性スピンホール効果を意味している。

T_aよりも高い温度T*から減衰はすでに始まっている!!!

✤ Mn濃度を減らすと、T*も低温側にシフトする。

スピンホール効果の減衰は、明らかにMn不純物の特性に起因している。

スピンホール効果減衰のメカニズム

- ▶ 高温だと、揺らぎが激しいため、伝導電子とカップルしない。
- ▶ T_{g} に近づくにつれて、伝導電子はMnモーメントの揺らぎを感じて、スピンの向きがランダムになる。 $\vec{J}_{C} \propto \vec{J}_{S} \times \vec{s}$
- 定性的に実験結果を再現できる。

まとめ

◆ 純スピン流は、スピン角運動量のみの流れ。特に基礎研究 には、スピン構造を探るプローブとして利用できる。

超伝導体にスピン流を注入すると、準粒子の抵抗が増大することが要因となり、指数関数的にスピンホール抵抗が増大する。

フラストレート磁性の典型例であるスピングラスにスピン流を 注入すると、伝導電子と局在磁性の揺らぎのために、スピン ホール抵抗が減衰する。